Each IoT device has it’s own ‘umwelt’ – a self-world – and combining umwelts is the key to successful IoT services.

The self-world of an IoT device is made up of all that it senses and all that it can do. All its sensor data and all its capabilities to change the physical world. Each device has different sensors and effectors, so many diverse devices working together can help each other.

The self-world of a single IoT device is very limited, like the self-world of a tick

Jakob von Uexküll’s idea of an ‘umwelt’ is really useful for understanding the Internet of Things (IoT), either for building a single IoT device, or an IoT app, or for building a whole IoT ecosystem.

If you want to design a single IoT device or a single IoT app then you need to know how it fits into one or more ecosystems. It cannot exist on it’s own. An IoT device on its own is just a device. The potential of the IoT lies in the combined capabilities of many devices working together.

If you want to design an IoT ecosystem – maybe because you want to build a platform, a network or something to help lots of people – then you need to understand how the devices in the ecosystem can help each other.

Whether you are wondering how an individual device can work with other devices or how can many devices all work together, then the umwelt idea helps to answer both these questions.

What exactly is an umwelt?

An umwelt is the ‘self-world’ of a machine, a person or an animal. It is a combination of all that it senses by plus all that it can do to change it self-world.

For example, a female wood tick hangs in a bush waiting for a deer or other prey. When it senses the butyric acid produced by all mammals, it lets go of its perch. If it lands on some fur this impact is the input trigger that makes the tick scurry around. If it then senses a warm membrane, like skin, then that input triggers piecing and sucking actions.

The tick’s self-world has three input signals and three output action. Its sensors are so limited that any warm membrane will trigger piecing and sucking. A rubber sheet holding warm glycerine will give the same input signal and generate the same action as skin.

Humans can see that ticks usually pierce and suck mammals’ blood through skin but the ticks’ actual sensors and are more limited that what humans see and understand. Ticks have a very different umwelt to humans, just as every IoT device has its own special sensors and effectors.

Von Uexkull also helps us to understand how every IoT device has its own perspective. He wrote about the ‘magic journey’ of animals. For example, ticks can survive for many years just hanging in wait for the scent of butyric acid; some birds migrate each year from pole to pole; and some insects just move from one end of a cereal gran to another.

The umwelts of animals are different because of their different sensors and effectors. And what they sense and do is strung together into the very different journeys of their lives. So the magic journeys of animals are hugely different in terms of timescale and distance. This gives each species a very different perspective on the same events.

Devices and applications have different sensors and effectors – different umwelts.

What devices and applications sense is subjective and specific to each one. For example, a phone might have special information because it monitors a particular person’s physical activity levels. That phone has the right sensors – accelerometers and a clock – and only that one is in the right place at the right time to record that user.

Also, the things different devices can do are subjective and specific to them because they all have different capabilities. Phones use screens, audio speakers, vibrators and other effectors to influence you. Cars do this as well but they can also move you. Websites can inform and guide you. And rowing machines can simulate different water conditions or just say when your exercise time has finished.

Devices and applications have different sensors and effectors. So if devices work with other devices they can get access to different information and different ways to help a user.

The secret to successful IoT services

No single device has enough information to help you with anything but the simplest of problems. For example, apps are usually highly specific in what they are for and they usually need you to supply most of the information. And no single device has enough capabilities to guide you using multiple ‘touch points’ and to deal with most of the problems itself.

For example, Sat Navs and GPS apps are best when they integrate lots of data sources and they are indispensable when then they can actually do something about the different problems that come up. A sensible shopper commonly looks at several different retailers’ websites using several different devices, plus some in-store checking, in their shopping journey to buy a high value item.

Bigger problems are solved by solving smaller problems one after the other in a sort of ‘journey’. And each smaller problem requires different information and different capabilities. The more complicated the problem is then the more complicated is the service that it solves. But a single device is too limited on its own. It can only know about its own self-world and it can only change it’s own self-world in a small number of ways.

Real-word problems are complicated. The more that devices can combine their information-sensing capabilities and their abilities the change the real world, then the more sophisticated are the IoT services that they can jointly produce.

The IoT offers the potential for ‘personal Sat Navs’ that use information from a network of sources and that employ a variety of ways to smooth and guide each user’s journey. Journeys in shopping, travelling, education, recreation and work – IoT services can solve the collections of serial problems that we call life.

If you want to design a single IoT device or a single IoT app then think about what extra data you need and what extra capabilities would complement whatever your device or app can do on its own. How do these change along the course of each user’s journey?

If you want to design an IoT ecosystem then think about the mix of data and capabilities that you have access to. Do the devices that produce them work smoothly together and how do they combine to fit the needs of the different users? Including the needs of the devices themselves.

Advertisements

IoT paranoia: can your devices trust the other IoT devices that help them?

For the Internet of Things (IoT) to function well then lots of IoT devices need to work together properly. But how can these other devices be trusted? Blockchain technologies might be the answer.

Lego block and chain a

The idea of any device with a chip and a web connection working with any other device has lots of potential. At home your freezer could partner with your cooker to swap ideas for meals and precise cooking instructions that are based on what is actually in your freezer and how your cooker best heats up food.

At work your office devices could work together to help you and your colleagues.  Your car could be operated by your phone and vice versa. The Internet Of Everything means any device could potentially work very closely with any other device.

The trust problem

But what happens if one of these devices has been hacked? Maybe your phone has a virus. Or if you need your car to communicate with someone else’s car – to organise routes or a place to meet up – then maybe the other car will infect yours? So how can we make the IoT secure?

The problem of ‘trust’ is bigger than just avoiding infection. How can you trust a device that you do not own or control? Maybe a toll booth will charge you incorrectly, maybe a person will use a phone app to pretend to be someone else. Maybe an IoT device will just give bad information. The cause might not even be hacking, maybe just a software bug, human error or biases caused by differences in peoples’ taste or perspective.  How can all these be avoided?

The coordination problem

Also, whatever your IoT project is about, the issue is more than just about whether you can trust some device. There is also a coordination problem. The potential of an IoT ecosystem lies in the combined sensors and capabilities of many devices. For example, many cars sharing congestion information is much more valuable than the information from just two cars. So the problem is to get many devices to work appropriately with many other devices. Trust and appropriate behaviour need to be guaranteed for all the devices that work on a particular problem or service.

It all boils down to two problems. How can you trust your own devices not to be hacked and how can you trust devices that you do not control to do what they are supposed to do – in a joined-up way?

How can we be sure of the identities, past behaviours and current permissions of other people and devices? How can we coordinate many devices so that they work in a joined-up way? And how can our devices do this checking automatically?

Fortunately a similar problem has already come up with digital currencies like Bitcoin. Digital currencies also need to be trusted and they need many people to join-up in agreeing that a particular buyer owns the digital cash to be able to pay for something. Buyers want to choose from lots of sellers so all the sellers have to agree that they trust the currency – even though the amount of cash each buyer and seller owns changes each time someone buys something.

Cryptocurrencies, like Bitcoin, solve this problem by using a distributed ledger like blockchain . A distributed ledger is a database of transactions that is shared and checked across many computers. And transactions can be money transfers or they can be IoT devices sharing data with each other.

Solution: You are what you do and what you do can be recorded

Blockchain technology is much more than the foundation of Bitcoin. Transaction data can include peoples’ identities, devices’ identities or any other useful data such as how they behave. Recording transactions makes it possible to know the real identity of every device and what it has done in the past.

New transactions are cryptographically recorded into blocks and each block in the chain of blocks is cryptographically linked to the previous block to stop tampering. The data in each block is encoded and part of that code is based on the contents of the previous block. To successfully tamper with this record would mean hacking all the computers in the network simultaneously, whilst at the same time guessing how to decrypt each block and the links between them.

Blockchain technology preserves trust in three ways: multiple copies of a single blockchain are shared and continuously checked; the data in each block is encrypted and to decode one block you need to decode the preceding blocks.

So, the problem of IoT devices trusting each other could be solved by using a blockchain technology to encrypt recordings of past behaviours and current permissions. And the problem of coordinating many devices could be solved by sharing a single blockchain database across a network of devices.

Of course there are many distributed ledger technologies and many types of blockchains. My point is that technologies like blockchain solve the trust problem by continuously checking multiple copies of a database that is securely synced.  And automatically synchronising multiple copies of the same database is also a strong basis for coordinating multiple devices.

Trust and coordination are two things that IoT ecosystems will badly need. So blockchain technology looks like it will be a foundation of the IoT ecosystem and much more.

What is an IoT ecosystem and how does it work?

Internet of Things devices work better together, the more IoT devices that link up the better. So which devices and which apps should yours connect to?

Natural ecosystems can tell us ideas for building Internet of Things ecosystems

In the Internet of Things (IoT), the more devices that connect with each other then the more perspectives and capabilities there are to be shared. More data from different sensors and data suppliers; and more ways to change the real world. Like operating cars, home appliances and other machines or getting really useful options from screens or bots.

If you are a device manufacture or an app developer the problem then is: which devices and apps should yours connect to? If you can potentially link to any device and any app then which are most appropriate?

How do you avoid confusing your users when they use your product? How do you avoid confusing yourself? What to connect to is not a problem for the user. The device manufacture or the app developer needs to figure this one out. Just give users a simple list of high quality options that are personalised to their current situation.

Your product cannot link to every other device on the Internet. So which devices have the most useful perspectives and capabilities? You need a strategy that helps your product to be better at its purpose.

And don’t forget security.

Next, having chosen which other potential devices or apps should work with your product you then need to persuade their makers to partner with you. There might be an API to help you connect but close data sharing and brand associations needs discussions and agreements. And that means you need to get noticed, get taken seriously and get a mutually beneficial deal.

The prize is that the first products to build up their IoT ecosystem of partners will get more data and features to build into better services. As my son knows very well, a bigger and more varied pile of Lego bricks means he can build a more interesting spaceship or a more secretive secret base.

There is a lot of talk about business ecosystems and an ecosystem of IoT devices is a lovely thought in principle, but what actually is it and how do you build one? Looking at natural ecosystems might help us.

Natural ecosystems are glued together by ‘nutrient pathways’

The glue that binds together natural ecosystems, like rain forests, deserts and even a single puddle of water is their nutrient pathways.

What we think of as natural ecosystems are actually the ‘pathways’ that recycle scarce resources. The essence of natural ecosystems are nutrient flows along pathways which are based on the natural activities of many different organisms.

Whatever the ecosystem, the quality that makes a natural ecosystem stand out; the thing that makes people say ‘that collection of organisms and stuff is an ecosystem’ is how it moves resources around itself. Microbes, insects, larger animals and plants and other living things move resources around just by living their lives.

The animals, plants and other organisms can come and go, die off or just move to another ecosystem. The pathways need not be dependent any particular organism or even a single species. But the thing that makes an ecosystem appear to us as an ecosystem is the way it recycles scarce resources.

For example, rain forests actually have relatively few nutrients, the soils are very poor. When leaves fall to the ground they are broken up by tiny organisms. Then the nutrients are absorbed by fungi and quickly recycled back into the trees by their roots.

Recycling and reusing nutrients along specific pathways is what makes one natural ecosystem different to another. Different organisms have different ‘roles’ in the pathways and each role might be performed by several different species.

Business ecosystem pathways glue together the IoT ecosystem

If pathways that recycle scarce resources are the essence of ecosystems then what are the scarce resources that business ecosystems can recycle?

The scarcest resource for most businesses is customer knowledge. Customer knowledge about the situation any individual customer is in at the exact moment when they use your product; and knowledge about how all customers have used the product in different ways and in different situations.

Knowing the situation which an individual customer is in as they are using the product enables the product to be more responsive to the customer. And it enables the customer to get better advice and suggestions for using the product.

Learning about how all customers have used the product in different ways and in different situations helps a firm to improve the design of the product with software upgrades or with hardware redesigns. Or it helps to suggest solutions to common problems that customers find as they use the product. These solutions can even be suggested to customers by the product itself.

For example, Sat Navs make travel route suggestions and cooking apps make recipe suggestions. Knowing more about the bigger picture of the users life – the reason for the journey or the reason for the meal – would suggest more personalised options. Knowing what other users have chosen in similar situations would help generate more options as well as a more accurate link between a suggested option and a given situation.

This sort of information was scarce before devices connected to the Internet because the direct relationship with users was mainly with retailers rather than product manufacturers. Also, an Internet connection enables products to record how they are used and then to send this information back to their manufacturer.

Product usage information can be combined with information from different products and other information about users’ lives. A deep understanding of the wider situation that a product is used in helps it to be used more successfully.

The IoT technology stack is a good way of explaining how smart products can connect up and share data. But how do you build ecosystem’s pathways?

Building an IoT ecosystem by choosing devices to partner with

To start building your ecosystem, first ask ‘What customer knowledge do you need to make using your product more successful as it is used and also as you design and (re)design your Minimum Viable Product?’ Do this for every stage of your users’ journeys.

Next you need to choose the data suppliers who can share the data you need to manufacture this customer knowledge. The data suppliers who you partner with (the devices, apps and other sources) will be the components of your ecosystem pathways. The order in which they work together is the flow plan of the pathways.

And how do you persuade them to do it? Just explain to them how it all works using the logic behind your flow plan of ecosystem pathways. Your flow plan describes how each device or app plays its small part in the wider scheme of your ecosystem’s work just by doing its job.

Each device or app has a job to do, its role.  So your flow plan of ecosystem pathways is also the business model of why your new ecosystem will work.

 

What is the Internet of Things?

IoT devices can be anything with computing power and an Internet connection. Phones, tablets, PCs and games consoles can all be the ‘things’ in the Internet of Things. Even refrigerators, cars, washing machines and stand-alone sensors like web cams – if they have a web connection. And all the apps on your phone certainly have computing power and an Internet connection.

The Internet of Things is a network of any device with computing power and an Internet connection.

The ‘Internet of Things’ and the ‘Internet of Everything’ just mean collections of different devices and apps that work together with some common theme, which is usually called an ‘ecosystem’. The healthcare IoT ecosystem is the collection of all the devices that medics use on their patients. The Quantified-Self ecosystem is like the healthcare ecosystem but it is more about the devices and apps that we use ourselves, to monitor our own activity levels and our bodies.

For example, Fitbit and Jawbone gather physical activity data, Scanadu is a urine testing system that can be measured by a camera phone, Quealth assesses your risks for five major diseases, and there are many IoT sensor products.

Some early stage IoT ecosystems are themed around smart cities, which aim to use digital technologies to manage key services like food, energy, communications and transport as well as citizen participation. Smart cities need smart buildings, which are a whole ecosystem in themselves. And smart buildings are full of smaller devices that are owned by different people who do not necessarily own or live in the smart building itself.

IoT devices need to connect with each other

The key to the IoT is that the ‘things’ can connect to the Internet to help users to use them and to get better at doing so. An IoT toothbrush can use your phone as a keyboard, a touch screen and a dashboard to display how you clean your teeth every day. And it can make suggestions based on how other people do it or on the latest dental research.

Each device’s Internet connection allows it to compare how you clean your teeth with anyone else that uses a connected toothbrush. Learning from other users is a great way to make any product easier and more successful to use. The same applies to the Waze app as it crowdsources warnings of delays and snippets of journey advice. Rolls-Royce also learns from huge numbers of its engines by using sensors to track their health in real-time as they fly around the world.

Without an Internet connection each IoT device is just a device. But when lots of devices link up they potentially get access to two things – all the other devices’ perspectives and all the other devices’ capabilities.

The other devices’ perspectives are like when Wayz users share information about delays or traffic jams, as they experience them. The other devices’ capabilities are like when the purpose of one device complements the purpose of another device.

For example, your home weighing scales, the treadmill at your gym, your refrigerator and your supermarket shopping app could all share information with a cooking app on your phone. The cooking app could then suggest meal recipes based on your weight, your exercise levels, what you have in your refrigerator and the ingredients will be delivered that evening.

The scales, the treadmill, the refrigerator and the two app have different perspectives on your life, their sensors ‘see’ different things. These devices and apps also have different capabilities to do different things for you. Like ordering ingredients or making recipe suggestions.

Even a passive device like your home weighing scales can make useful suggestions, if it knows more about your life than just your weight.

The success of an IoT ecosystem is based on the ‘network effect’.

The ‘network effect’ is the idea that the more members in a network there are then the more valuable it is to be a member of that network. The opposite of this idea is like when a new social network has very few members.

In the IoT, the more devices that connect with each other than the more perspectives and capabilities there are to potentially be shared.

But the challenge for ecosystem builders is to figure out which devices to link together into an ecosystem. And not just devices. Apps, firms, government departments, public services and consumers are all potential members of the Internet of Everything. You cannot link and share with every single one, so how do you choose?

One way to choose is to focus on a theme – health, travel, a sport or a particular job role. But there are still many firms to partner with and many sources of data to potentially access.

In the next post I’ll explain how to choose partners and devices to build an ecosystem from and how to persuade them. I’ll take some ideas from natural ecosystems and use them to show you how to build your own IoT ecosystem around your device, app or business.

My new Econsultancy post – How purchase intent data can help you understand the customer journey.

I’ve a new post on Econsultancy, the digital marketing blog. It’s from some research I’ve just done with Maybe*: How do millennial shoppers decide what to buy?

We’ve shone a light into the dark recesses of the customer journey. The earlier on along the shopper journey you go then the less you know. But earlier on is when you want to influence shoppers. You can read it here.

My new guest blog for Control Shift

Control Shift, the personal data experts, asked me to do a blog on TACKLING THE DATA SHARING CHALLENGE.

There are many benefits to sharing more data between firms and other organisations but right now, as a society, we do not know how to do it safely.  In the blog I look at some of the opportunities and pitfalls, then I suggest a way forward.

Big Data and the Data Protection Act

I contributed comments to the recent Information Commissioner’s Office report on Big Data and Data Protection.

UPDATE: The above link is the ICO’s new report which includes Artificial Intelligence. The older report with my contribution is here: big-data-and-data-protection.